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Abstract: A language table is a two dimensional
data structure, normally a square, which is built up like
a "crossword puzzle" associated to a language L. The
paper deals with the problem to construct to a giﬁen
language L language tables where no zero gntries'(i.e.,
entries different from letters) occur, so called complete
tables. We show for example that whether or not there
exists a language table for L of size n for some n; is
undecidable for regular languages even defined over a two
letter alphabet, though it is decidable for standard
events.:The nroof shows that language tables are more
powerful tha.. dominoes because we can encode tilings of
ﬁhe.plane, squares, etc., by complete language tables of

very simple languages.

1. INTRODUCTION

Language tables are two dimensional data structures

which are built in "crossword puzzle" manner. That means,
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given a language L over some alphabet X, we considér con-
nected squarés of empty entrieé or letter entries such
that reading rows frpm left to right or columns from top
to bottom we meet either words of L or isolated letters.
Language tables therefore define patterns constituted of
various components such that horizontally and vertically
the structure is controlled by the syntactical structure

of the given language.

There are various natural questions associated with
such a device. One measure is to count the number of empty
places, the defect of a table. This measure defines in
some sense the compactness of possible patterns. The most
compact pattern is a table without any empty entries, a
'so called complete table. In this paper we study decid-
ability problems on completeness; in [2] the combinatoric-

al aspects of this measure is investigated.

We focus our interst to the following decidability

problems.

(1) The n-CTP (complete table problem): Given n, is

there a complete table for L of size n?

(2) The CTP: Is there an n, such that there exists
a complete L-table of size n > 1?
(3) The infinite CTP: Is there an infinite sequence

of compléte L-tables increasing in size?
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If X is a one-letter alphabet, all three problems
can be rewritten easily to very well-known decidability
problems The situation is completely different for great-
er alphabets. Our main result is that the CTP and the
infinite CTP are undecidable for regular sets, even de-
fined over two letter alphabéts, though decidable for
standard events, whereas the n-CTP is NP-complete for

regular sets and contextfree languages.

The method to prove these results relies heavily on
the fact that "tiling" problems give rise to construct
complete tables for very simple (i.e., regular) languages.
We use the paper of R.M. Robinson [3], where Turing
machine computations are encoded by tilings of the plane,

squares, etc.

2. BASIC NOTATIONS AND PRELIMINARY CONSIDERATIONS

We assume that the reader is familiar with the basic

definitions and results of formal language theory (s. for
(1.
Consider an alphabet X and a symbol O € X, which will

represent empty entries. We are dealing with (n,n)-matrices

A over X U O.

If A is such a matrix, then
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(RA); = A[i,1]...A[i,n] and
(ca), = a[1,1],.,a[n,i] for 1 s i < n.

Obviously, (CA)i = (RA.T)i if AT is the transposed matrix.

To any such matrix we associate the graph GA with vertices
{(1,)/1 < i,3 < n}

and edges
{((4,3), (k,8))/]|i-k|+|j-2|=1,A[1,j]#0 and A[k,2]# O}.

Now, let L c X* be a language. We assume X c L .

Definition:
(1) A is an R-L-table (of size n) if and only if
GA is connected and _
(RA), € o*. (L.o")*.0% for 1 < i < n.
(2) A is a C-L-table (of size n) if and only if A’

is an R-L-table.

(3) A is an L-table (of size n) if and only if A is

both an R-I~table and a C-L-table.

Ezample: Consider the Dyck-language D; € {(,) 1*. Let
L =Dy, U{()} . Then
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are both L-tables.

We are interested in filling tables in the best
possible way. Therefore we define for w € (X U {O})*,

leo = number of occurences of O in w,

|w] length of w

and _ .
def(A) = I;_,|(RA), ], -

We call A complete if def(A) = O.

Let us start considering the case X = {a}. If there
is a word w in L < {al* then, obviously, there is a
complete L-table of size |w| (A[i,j] = a for 1 <1i,j s

< |w]).

Hence we can conclude the following facts:

(1) To a given n there exists a complete L-table A
of size n if and only if there is a woravw € L with
|w| = n.

(2) There exists a complete L-table A of size n > 1

if and only if L n {w/|[w|=n} # @ .

(3) There exists an infinite sequence A4 ,A,, ... of
complete L-tables Ai of size n; with n, < n, < o.. if
and only if L is infinite.

Thus our three decidability problems are completely

reduced to the very well-known decidability problems for
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laﬂguages L < {al}*.

Now consider L € X* for an arbitrary X. Then the
n-CTP is décidable for L if the question "w € L2?" is
decidable for every w € X* with |w| = n. For we can

determine in this case

L =LnN {w/|w| = n}
"and check whether or not a complete Ln-table of size n
exists. Obviously, the n-CTP for L is in NP if there is
a recognition algorithm for L of polynomial time complex-
ity.

Bgfore we start to prove our main results, we show
that the CTP and the infinite CTP are decidable for
standard events.

LEMMA 1. If L =S,

ayw 3 a standard event, theﬁ

there is a complete L-table of size n+l1 if and only if
. +
there are two words w,v and a letter x with wx € o nL,

xv € w NLand |w| = |v|] =n .

Proo f. Suppose there is a complete L-table A of
size n+1. Consider (RA), =vw-A[1,n+1] and (CA) ., =
= A[1,n+1]-v . Using x = A[1,n+1] we get immediately the

result.

-

On the other hand, let wxv be giveﬁ according to the

assumption. Let x = XqeooX

nt V= Yqeeo¥p o then build
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the following table

Xy X, c.. X X
X, X3 ... X Y4

X X +¥p2 Yno

Lx Yy «--¥pq1 ¥y
-

which is obviously a complete L-table.

Since it is decidable, whether or not this kind of
word wxv exists in L for every standard event L, we get

the following
COROLLARY. The CTP is decidable for standard events.

In the following denote by kL the constant of the
pumping lemma for the regular set L (for example, derived

from the minimal acceptor).

LEMMA 2. If L = Squ 18 a standard event then the
following two statements are equivalent:

(i). There 18 a sequence (Ai):=o of complete L-
tables of increasing 8ize n,.

(ii) There exist two words w,v and a letter x with

wex €at niL,xveow nL, |lwx]| > k; and |xv| > Xk .

Proof. (i) => (ii): By Lemma 1 we can assign to

every i, words Wo Vg and a letter X5 such that Wi Xs e u+ n
. + _ _
AL and x;v; € w N L and |wyx; | = |x;v;] = ng . Thus



- 20 -

(ii) follows -immediately choosing n; > kL.

(ii) => (i): Let w,v,x be given according to the
assumption. Then, by the pumping lemma for regular sets:

n
(1) wx = w1w2w3,|w2| >0 and ¥ n 2 1: w,Wwowy € L,

2
‘ n
(2) xv = v1v2V3,|v2| >0and ¥n 2 1: v,v,vy €L .

Consider i € N . Then there exist j,% 2 1 with

|w1wgw3| >3i and |

|wdwgw3| < |v1v§v3|.
We get v1v§v3 = xvi for somé appropriate v’ and xv’ € w+n'
N L because _

| XV = V,V,V,y € ot n L.

Furthermore, xv" € w+ N L for every v" with v"u = v’ for
some u. Choose v" such that |xv"| = |w1wgw3|. Analogous-
ly, w1wgw3 = w'x for some w’ and w’'x € a’ nkL.

Now, replacing in the construction of Lemma 1 the
words w and v by the word w/ and v", we get a complete
L-table of size n; 2 i. Since there exists for every i,
a complete L-table of size ny > i, statement (i) follows

immediately.

Since it is dedidable whether or not L fulfills’
- assumption (ii) for every standard event L, we get the

following
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COROLLARY. The infinite CTP is decidable for standarc

events.

3. UNDECIDABILITY RESULTS

We want to show that the CTP and the infinite CTP
are both undecidable for regular sets. To do this, we
connect both problems with domino problems of.tiling the
plane respectively squareé of arbitrary éize. Following
R;M. Robinson [3], we can encode Turing machine computa-
tions by "tiling" the plane with an associated,set of
dominoes.AWe don’t need the construction of this domino
set but the reader can visualize our method considering
the appropriate tiling problems. We sharpen-the general

undecidability result for regular sets over X = {a,bl.
Our proof includes three parts£

I. Instead of using a single language L for both,
rows and columns, we use a pair of languages (L1,L2)
controlling separately columns and rows. |

II. We encode Turing machine computations by tables,
where rows and columns»are controlled by two languages
L, and L, thch are essentially standard events. Here
the method of R.M. Robinson is used.

III. We encode complete tables over arbitfary alphabets

to complete tables over the two letter alphabet {a,bl.
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Let us start with the first step. We extend the.
definition of an L-table to pairs (L,,L,) of languages:
an (n,n)-matrix A (over X U 0) is an (L,,L,)-table if

and only if one of the following two conditions holds:

. (i) A is an R-L,-table and a C-L,-table, or

iii) A is an R—Lz—table and a C—L1-table.
Now, we show that we can merge L1 and L2 together to one
language L preserving regularity and campleteness; This
is done by an endmarker technics. Consider a set of
letters

H={#, #y #3, #40 $, F )

with HNX=¢. Let X" =X UH.

Define L by
= * L
L=+4$"#, U, $* #, U L, 3 U
. # #*
#1¢ +3U#2¢ #‘U¢L2¢.
Observe that L is regular if and only if L, and L, are

both regular. Obviously,vany complete (L1,L2)—tab1e of

size n transfers to a complete L-table of size n+2.

Now, we show the converse correspondence, namely,
that every complete L-table of size n > 2 can be trans-
formed into a complete (L1,L2)—tab1e. Consider a complete
L-table A of size n > 2. All words in L must start with

#,,%,,#,,$ or ¢ . Assume A[1,1] € {$,% }. Then af1,2]=0
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or A[1,2] € X and therefore A[2,2] = 0.

Now, assume A[1,1] e {#,,#3} . Then A[1,3] = #,
for some 1 < j < n. Hence A[2,j] = 0 . In conclusion
A{1,1] = #,; because def(A) = 0 . Thus

# »
(RA), € #,4% #, U w, i SO
First case: Let (RA), € #$* #,. Then
» * '
(CA), € #.§ #, U # ¢ H#y .
Assume (CA)j'e #18* #2. Then we get (RA)_ € #, ¢:*#4,i.e.,
(CA)2 = $w & for some w € X’ U O. Since there is no word
in L starting with $ and terminating with ¢ , A[j,2] = 0
for some 1 < j < n, and therefore def(A) > O - a contra-
diction. Thus we get (CA)1 € #1<¢ *#3,i.e., (RA)n €
€ #,$* #, and (CA) € #, #*#, . Since def(a) = O,
(cCA), € $L,$ and (RA), € ¢ L, % for 1 < £ < n . Hence
by deleting the borderlines we obtain an (L1{L2)—tab1e A’

of size n-2 with def(A’) = O.
The second case, (RA); € #, ¢:*#3, is symmetric.
Thus we have proVen

. ¥
LEMMA 1. To any pair of languages L,,L, € X we can
construct a language L such that the following statements

are equivalent for any n > 2:

(1) There exists a complete (L1,L2)—table'of size n.

(2) There exists a complete L-table of size n-2.
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Furthermore, L i& regular if and only <f L, and L, are

both regulér.

The next step in our proof is the encoding of Turing
machine computations by ianguage-tables.

We follow R.M. Robinson. Cons;der a one tape Turing
machine T which‘moves in every step and stops with an
accepting state, otherwise it doesn’t stop (s. 3.
First we describe the alphabet and then the two languages
L1,L2, which control the desired table in such a way that

a computation is encoded.

Let B, denote the alphabet, Qn fhe set of states and
AT the (dgterministic) program of T. Furthermore we in-
" dicate the initial state by in(T), the "accepting" state
by stop(T) and the empty-cell symbol by @. We assume
in(T) # stop(T). Now, the alphabet of L, and L, consists

of three parts L,M,A representing

L: “letter tiles"

aesB
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M: "merging tiles"”

q
A: "action tiles"
qa qa
q’ q’
a’ a’
qaa’q’L € Ap qaa’q’R € A,

Let the functions left, right, top and bottom from
'L UMUA into (Qp U BT)* determine the word on the left,

right, top and bottom of every tile.

The design of the language pair encoding computa-

tions can be derived by the following picture

<+ tape -

time ¢

OOV WN=0
~—~r~e~re~re
=~~~
b -F ol ol ol o
==
~—e>E=2=>
S Al
(ol ol ol nd all nll
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By this picture the "tape" language L, is given by
L= L* -{xy/((x e Hpy €A V(xeAnryeHM)n right (x)=

= left(y)}+-L* The "time" language L, will be designed as

z . For all decision problems a

a standard event L,
ayw

and Y remain unchanged whereas w is adjusted appropriate-
ly.
Remark: Obviously, with little modifications L, can

be designed as a standard event, too.

Let
= {x/(x€ LUMA top(x) = @)
V(x € AA top(x) = in(T)@)}

‘and

Y—{(x.y)/((xeLl\yeM)V(xeM/\yeA)
V(x € AN yeM Vv (xe€ A ANy € L))

A bottom(x) = top(y)} .

To show the undecidability of the CTP for regular
sets we define w in such a way that the Turing machine T
stops when started with the empty tape if and only if
there exisfsla complete (L1,L2)—table of size n > 1. Then

the result follows immediately by Lemma 1.

Let
= {x/xe L UM V-(x € A N bottom(x) = sfdp(T)a

for some a € By )}.
Con51der a complete (L1,L )-table of size n > 1, where
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L, = zayw - Then (RA), determines the i-th configuration

of T when started with the empty tape. Furthermore,

bottom(A[n,2]) = stop(T)a for some a € Bp,

< %2 <£n . Thus T stops. On the other hand, évery accept-

and some 1 <.

ing computatidn of T,Qhén-étarted with the empty tape>
yields a complete'(L1,Bz)-table of size n > 1 (remind
in(T) # stop(T)!) because we can encode every configura-
tion of T to a word of L, and éontroi the computation by
L,. Extending the configurations by an app:opriate number
of @-symbols, we achieve always a}square matrix of tiles

and hencé a table.
-Thus we have proven the following
THEOREM 1. The CTP is undecidable for regular sets.

To show the undecidability of the infinite CTP for

regular sets, let

w=1{x/x€eLUMVv (x € AN (bottom(x) = ga =>

=> q # stop(T)))} .

Obviously, defining L2 = I for this w, there are

ayw
complete (L1,L2)—tables of every size, if T doesn’t stop
‘.when started on the empty tape. On the other hand, if T

stops within n-steps, there is no complete (L1,L2)—table

of size greater than n. Thus we get, using again Lemma 1,

the following
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THEOREM 2. The infinite CTP is undecidable for

regular sets.

We come to the last step of proof, namely.to encode
complete tables over arbitrary alphabets to complete
tables over the two letter alphabet {a,b}. The ehcoding
will be done in a way that single letters are represented
~as language tables. First we need some preparation. Con-
sider an alphabet X and the words W = Xq...x € X* with

|w| = n. We apply to these words the shift opérations

-0 _
on(x1 e xn) = Xq ..o X
and

k :
on(X1o..xn) - xn-k+1.o.an1.--xn_k(o < k < n) [

Define for every w, the table Q_ of size |w| by

_
A Ug(w) T
Oy = : .
n-1, .
L olfl. (W)‘

Now let X = {a1,...,am}. Let p = pq*---°Pp where

Pqe¢se+sPp are the first m primes and let q; = g; for

evéry 1 <£i <m. Assign to every a; the word

P:-1 q.
wg =f(ab " )t <is<m

and the table Qi = Q of size p.
0y

We prove_the following useful results on Qi:
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LEMMA 2.

(1) ¥1<i<m ¥1<ro,s,t <p:

( [r,t] = 9, [s,t] = a=> (RQ;) = (RA),).

(2) ¥1<i,j<mi#3j ¥1<r,s<p 3J1s<t<p:

Q; [r,t] = Qj[s,t] = a.

Proof£. (1) is obviously true. To prove (2),

consider (RQ;) . and (an)S . By definition

_ x,, P71 9y
(Ra;), = oh((ab * )H

and
ps-1 q.
J;((ab 3 )

(Rﬂj)s
for some O0 < k,2 < p. Choose k and £ minimal, then
k < p; and & < py- By this
p.-1 q,-1 p,-k-1

i ) i ab i

_ .k

and , Ps1.a;-1 py-i-1
(RR4) g = b (ab J )3 apJ .

Consider the places where an a occurs. These are given
by the formulas

‘v =k + xp; *+ 1(0 £ x < q4)
and

vi =4+ YP + 1(0 <y < qj).

Hence we have to study the diophantine equation

k + xpy + 1=2+ YP; + 1.
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It is easily checked, because gcd(pi,pj) = 1, that there
is always a solution with O < x < g; and O <y< Qs

which proves the lemma.

IN

LEMMA 3. Every compléte table A'of {og(wi)/1 <i

A

m, 0 <k < p} is a complete table of {cg(wj)/o <k <
< pl for some 3  if (RA)z,(CA)l_¢ {a,b}*aala,b}* for

1 <2< P-

Proo f. Consider % with 1 £ & < p. Then (RA)Q =

k =
= op(wj) - (an)

- K - . ’ Co_
= op(wi) = (RQ;) ,, for some i and k’. By Lemma 2,i = j.

K+1 for some j and k and (RA)2+1 =
Otherwise (CA)t e {a,b}*aala,b}* for some t. Obviously
the same holds for the columns. Thus there exist j,1i
such that

(RA) , € {05 (wg) /0 < k < )

_and

(ca), € {c;(wi)/o <k <p} for 1 £ 2 L p.

Therefore

IA
a}
IA
IA

(i) ¥ 1 p J!1 S s < py: Alr,s] = a

and

(ii) ¥ 1 £ s < p 3115r5pi:A[r,s]=a.

IN

Let n = #({(r,s)/A[r,s] =aand 1 <r < p;, 1 =5 p=1).

By (i),n = p; and by (ii),n = pj. In conclusion i

il
.
-

completing the proof.
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Consider a language L& {a1 roos ,am}’. Associate to

L the language ”

p-1 . o
L' =y {oX(u )...o];(wi )/ay

- € L and
k=1 P *1 n 03

n
1<i, smfor 1<% n}.
Obviously, every complete L-table of size n transfers to
a complete L’-table of size n-p..
Now we show the conversekcorreSpondence, namely, that
every complete L’-table transfers to a complete L-table.
Consider a complete table A’ of L’. Then we can decompose

A’ into subtables B.g of size p.

Biy +++ Bin
A" = : .
B e o0 B
ni nn
Consider an arbitrary B__ = B. By definition of L/,

rs
(RB)l,(CB)l € {qg(wi)/1's i<m O0<k< pN\{a,b}*aala,bl}*

for 1 < ¢ < p.
, K .
i <
Lemma 3 yields (RB)z,(CB)zAG {cp(wj(r,s))/o <k { p}

for some fixed j(r,s). Hence for eVery row R of Br1“'Brn
k -k ‘
. cen . 0 <k < p}

. cecd.: ' initi L’.
and aj(r’1) a € L by definition of

j(r,n)
Analogously, every column of the same "block" determines

the same word in L. Thus



Alr,s] = a,
is a complete (n,n)-table of L. In summary we have provén

- THEOREM 3. The CTP and the infinite CTP are un-

decidable for regular sets L c {a,bl}* .

Remark: It is quite easy to derive the result, that
the n-CTP is NP-complete for regular sets. Obviously, the
problem to decide for an arbitrary-non-deterministic
Turing machine T and a natural number”n whether or not T
accepts the empty word within n steps in NP-complete. Oﬁr
construction exhibits a polynomial time reduction from

this probiem to the n-CTP for regular sets.
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